服务热线: 400-018-5117
最新动态 / News more
发布时间: 2019 - 09 - 04
【干货】沧海桑田话抖动(下)原创: 是德科技KEYSIGHT 是德科技KEYSIGHT 今天 上期内容回顾: 01. 抖动研究的源起02. 抖动测试和分析的基本方法和经典理论03. 抖动测试的演进和新挑战(上)▲  点击回顾上期精彩内容上期关于抖动测试的专题介绍,得到了不少测试行业从业者的喜爱。本期继续推出抖动测试的下篇,主要包括如下主题:03. 抖动测试的演进和新挑战(下)04. 影响抖动测试结果和精度的因素05. 从抖动测试到相噪测试——实时示波器的新战场抖动测试的演进和新挑战(下)上期提到,数据中存在XTALK引起ABUJ抖动时频谱法分析RJ产生误差。那么Keysight EZJIT Plus如何解决这一新的问题和挑战呢?在EZJIT Plus软件里增加了Tail Fit方法进行RJ提取,如下图所示:图17  EZJIT PLUS软件里增加Tail Fit法提取RJ这一方法指的就是在实时示波器的抖动分析软件里采用双狄拉克模型法进行RJ提取:图18 Tail Fit法RJ拟合示意图在以往未使用高斯拟合的原因是由于总直方图中的点稀缺,曲线拟合的点数仍然很少,它会给你带来不稳定的结果。下图显示了针对一个数据信号存在和不存在串扰情况下分别采用频谱法和高斯尾部拟合法对比的结果。左边显示的是无串扰情况下分别采用频谱法和高斯法结果相近,右边显示在有串扰情况下,频谱方法得到的RJ明显偏大,采用高斯法后得到的RJ结果就显然回归正常。图19  高斯法和Tail Fit两种方法分别对存在和不存在串扰引起的ABUJ分离差异对比除了采用高斯尾部拟合法外,为了获得更高精度的测量,还可以先关闭相邻通道的串扰源,进行一次抖动测量并记录RJrms结果,打...
发布时间: 2019 - 08 - 28
【干货】沧海桑田话抖动(上)如果要评选电子工程师近20年来的最耳熟能详的专业词汇,眼图和抖动作为孪生姊妹一定在前10之列。所以业界关于抖动的论述和文章也是时常见诸各种媒体和平台。本期微信头条,小K也将就抖动测试做一个专题介绍,本期主要包括如下主题:01. 抖动研究的源起02. 抖动测试和分析的基本方法和经典理论03. 抖动测试的演进和新挑战(上)(本篇共 6000 字左右,预计需要 20 分钟,分时阅读建议浮窗观看。)抖动研究的源起抖动测试最早在上个世纪80年代开始萌芽,HP公司电信网络测试部门-苏格兰科技公司1982年在苏格兰推出了针对PDH(Plesiochronous Digital Hierarchy,准同步数字体系)的第一个抖动测量仪器,速率高达E3和DS3,之后在1984年推出首批140 Mb / s抖动测试仪之一。在90年代推出针对SONET / SDH抖动测试产品和方案。事实上在同步数字传输体系(SONET/SDH)和通讯系统中引入抖动的概念主要用于评估数据包级的传输延时偏差。因此大家也可以看到经典抖动定义也来自于当年的业界巨擘贝尔实验室。进入90年代以后,随着数字电路系统中的源同步时钟总线的发展,由于外部同步时钟频率渐渐成为瓶颈开始转向嵌入式时钟的串行差分总线,非常典型的就是PCI总线同步时钟频率最高到133MHz就开始转向PCIE1.0 2.5Gbps发展。由此对数字电路系统中的水平时间参数的测量也从传统的Setup/Hold或Skew测量转为水平方向Jitter的测量。在今天,抖动测试除了是很多高速串行总线和标准的一致性测试众多项目中的重要组成部分和内容,同时还是针对系统级传输性能评估的重要方法,以及探究系统问题根源的重要手段。因此对抖动进行深入的探索和研究无论何时都具有深刻的意义和价值。抖动测试和分析的基本方法和经典理论...
最新案例 / Case more
sv_complex.aspx?Fid=n8:8:8
最新方案 / Soluon more
发布时间: 2019 - 08 - 21
如果您需要捕获的信号是低占空比脉冲或猝发信号,并且信号之间有较长的空闲时间(例如封包串行数据),那么配有分段存储器的示波器可以有效地延长时间并提高以较高采样率捕获的串行数据包数量。所有示波器都具有数量有限的采集存储器。您应当知道,示波器的存储器深度决定波形时间和以特定采样率捕获到的串行数据包数量。您可以将示波器的时基设为很慢的时间 / 格设置,以便延长捕获时间间隔并增加串行数据包数量;但是当时基设置超出基于最高采样率下的最大时间间隔时,示波器便会自动降低采样率。在这种情况下,示波器无法提供精确的水平和垂直波形细节(基于示波器的指定带宽和最大采样率)。为什么需要分段存储?如果需要捕获较长时间和更多的串行数据包,同时仍在高采样率下进行数字化处理,只需购买配备更深存储的示波器即可。然而,配有千兆级采集存储器的示波器非常昂贵。如果需要采集的信号在重要波形分段(例如低占空比脉冲或串行数据包猝发)之间具有较长的信号空闲时间,那么具有分段存储器采集功能的示波器是更为经济的解决方案。【捕获时间 = 存储深度 / 采样率】通过将示波器的可用采集存储器划分为较小的存储器分段,分段存储采集模式可以有效地延长示波器的总采集时间。示波器可以在高采样率下,有选择性地针对被测波形的重要部分进行数字化处理。由此,示波器能够以极快的重新准备时间捕获很多的连续单次波形,同时不会错过重要的信号信息。
资讯 News

乘风5G机遇,第三代半导体材料势如破竹

日期: 2019-08-21
浏览次数: 73

乘风5G机遇,第三代半导体材料势如破竹

是德科技KEYSIGHT 今天

面对第三代半导体材料,你准备好了么?

下篇:5G革新利器

近年来随着5G标准愈发明细,通讯基站所使用的第二代半导体材料无法满足更高传输效率、更大输出功能、更强更稳定的散热、更少电阻、更小体积等诸多需求。

例如,第二代半导体材料砷化镓功率放大器和互补式金属氧化物半导体功率放大器(CMOS PA),其中又以GaAs PA为主流,但随着5G的到来,砷化镓器件将无法满足在如此高的频率下保持高集成度。而近年来宽禁带与超宽禁带的第三代半导体越来越得到重视,是制造通讯系统器件的优良材料

近日随着中国5G商用牌照的颁发,各大运营商也将会进行5G基础设施大范围部署。第三代半导体器件,例如GaN器件的数量也将会以大于50%的速度爆发性增长。借着5G发展的机遇,第三代半导体器件的市场将会逐渐扩大,有望发展为市场的中流砥柱


一、什么是第三代半导体

半导体产业发展至今经历了三个阶段

第一代半导体材料以硅为代表;第二代半导体材料砷化镓也已经广泛应用,而第三代半导体是指以氮化镓(GaN)、碳化硅(SiC)、金刚石、氧化锌(ZnO)为代表的宽禁带半导体材料。

和第一代、第二代半导体材料相比,第三代半导体材料具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点,可以满足现代电子技术对高温、高功率、高压、高频以及抗辐射等恶劣条件的新要求。

从5G移动通讯技术的发展和需求来讲,第三代半导体尤其是氮化镓(GaN)、碳化硅(SiC)为首的毫米波器件和微波器件都是满足5G更高频段,更高功率等应用的理想选择

和第一代、第二代半导体材料相比,第三代半导体材料具有宽的禁带宽度,高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.2ev),也称为高温半导体材料。

乘风5G机遇,第三代半导体材料势如破竹


二、5G中第三代半导体材料应用

根据3GPP 38.101协议的规定,5G NR主要使用两个频段:FR1和FR2,其中FR1 (450MHz-6GHz) ,即通常所说的5G毫米波频段。FR2(24.25GHz-52.6GHz),即通常所说的5G毫米波频段

对于毫米波的拓展是5G通讯系统目前人们最关注也是难点最大的部分。根据上文所叙第二代半导体材料无法满足在毫米波频段更高传输效率、更大输出功能、更强更稳定的散热、更少电阻、更小体积等诸多需求。

此外基站射频收发单元阵列中所需的射频器件数量大为增加,基站密度和基站数量也会大为增加,因此相比3G、4G时代,5G时代的射频器件将会以几十倍、甚至上百倍的数量增加,因此成本的控制非常关键

而第三代半导体材料,以氮化镓(GaN)为例,其高功率密度、高效率、宽带等特性极其适用于5G基站应用。但是过去由于毫米波器件/芯片成本过高,一直用于军事领域而无法大规模商用。

最近几年,通过使用SiGe、GaAS、GaN等材料并结合新的生产工艺,工作于毫米波段的芯片上已经集成了小到几十甚至几纳米的晶体管,大大降低了成本,GaN等第三代半导体材料的市场空间也随之变得巨大,为毫米波的大规模商用提供了可能

根据预测,2017-2023年GaN RF器件复合增长率23%,基站和防务将成为GaN RF器件最重要的应用。2019年,基站端GaN放大器同比增长达 71.4%。2020年,基站端 GaN 放大器市场规模预计达 32.7 亿元,同比增长 340.8%;预计到2023年基站端 GaN 放大器市场规模达121.7亿元。


三、面对革新,你准备好了么?

由于 5G 毫米波和超宽带功率放大器还处于起步阶段,为了验证和确保第三代半导体材料的器件,例如氮化镓(GaN)功放能够满足 5G 无线传输的要求,无论是器件厂商还是基站系统厂商都需要在调试和最终系统测试阶段,对产品进行大量射频参数测试,主要包括两类:

第一类,系统指标测试:

是根据无线通信系统标准针对 5G 宽带调制信号所要求的矢量误差 EVM 和邻道泄漏比 ACLR 等。

第二类,传统器件参数:

例如 PA 自身的器件参数,包括输 出功率 ,增益,噪声系数和 S 参数/X 参数等。


第一类

器件参数测试+On Wafer测试:

毫米波器件包括:PA、混频器、IQ器件等多种器件,正对测试需求也不尽相同,例如S参数、增益压缩和谐波杂散等,在此小编也为大家总结如下。

乘风5G机遇,第三代半导体材料势如破竹

针对于上述多种器件和测量项目的需求,Keysight提供性能强大的高性能网络分析仪PNA-X,满足射频全参数测试。

以GaN  PA功率放大器测试为例,下图展示了对于PA功放,PNA-X 单台仪表代替传统的网络仪+信号源+频谱仪+功率计多台仪器,单次链接,多次测量,完成射频全参数测试。

乘风5G机遇,第三代半导体材料势如破竹

另外在针对On-Wafer测试,例如对于PA的On-Wafer测试针对于种种测试需求PNA-X也可以一台解决:

乘风5G机遇,第三代半导体材料势如破竹

第二类

系统指标测试:

针对 5G 毫米波和超宽带 PA 的 EVM 测试与传统的 3G/4G 有很大不同, 主要原因是毫米波和超宽带条件对仪表和附件所构成的测试平台的要求大大提高,由测试平台所引入的失真和误差会严重影响最终的测试结果。测试平台本身必须具备宽带校正,以确保在测试 PA 之前仪表和所有附件所引入的失真和误差达到最小

例如在毫米波超宽带 PA 测试中,发现测试附件会产生影响,比如毫米波频段使用的线缆和接头,相对于 6GHz 以下的低频段,一般存在更大的线性失真和不平坦性,如果是仪表内置校正方式,也很难应对,但是现场外部校正方式就可以把它们包含在校正数据里面,去除这些部分的影响。

乘风5G机遇,第三代半导体材料势如破竹

是德科技 5G 毫米波和超宽带测试平台


------转自是德科技------

News / 推荐新闻
2019 - 01 - 07
点击次数: 267
第93届中国电子展我司将携手是德科技共同参与2019年4.9~4.11在中国深圳举办的第93届中国电子展。展馆分布图内部展位图:下面是展会的详情信息:展会地址:深圳会展中心展位:7B013展会时间:2019.4.9~2019.4.11期待您的到来,如想了解更多展会信息,可拨打联系电话:53081599(上海)/+86 0755 88265155(深圳),或可直接在线咨询。期待您的参与。
2018 - 11 - 20
点击次数: 169
2019是德科技大中华区分销商高层论坛已于2018年11月15日在西安隆重举行。此次高层论坛的主题为“聚十三朝古都,展十五载辉煌”,同时也是一个隆重的十五周年庆典!      在此期间,上海精测电子有限公司因过去一年获得突出业绩,从多个代理商中间脱颖而出,获颁“最快成长奖”,“优秀分销商奖”以示奖励。
0
2019 - 08 - 21
Copyright ©2005 - 2013 上海精测电子有限公司
犀牛云提供企业云服务

上海市北京东路668号12层B2,

深圳市科技南六路29号万德莱大厦南3A

南京市绿都大道4号C-2栋506室

 400-018-5117,0755-88265155 
 25-58838327
传真:+86 0755-2788 8009
邮编:330520

上海精测电子有限公司,深圳精测实业发展有限公司
南京精测国际贸易有限公司

X
1

QQ设置

  • 在线咨询
3

SKYPE 设置

4

阿里旺旺设置

6
展开